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Introduction
What is REM Behavior Disorder (RBD)?
RBD is a chronic sleep disorder where patients exhibit violent
behavior during sleep due to the loss of muscle atonia that
typically occurs during REM sleep. RBD can be considered
idiopathic, or manifest in individuals using antidepressant, those
with obstructive sleep apnea (OSA), and in individuals with
other sleep disorders such as narcolepsy [1].

Prevalence of RBD:
RBD has a prevalence of 0.38% to 2% among individuals over
60 years old [2]. The prevalence of polysomnography (PSG)
confirmed RBD has been estimated at 0.68% of the general
population, and that of probable RBD at 5.65%. Idiopathic RBD
is considered a pre-clinical marker of neurodegeneration with
strong predictive value. Large longitudinal cohort studies
demonstrate 81–91% of idiopathic RBD patients, followed for
≥14-years, will develop a definite neurodegenerative disease or
mild cognitive impairment.

Diagnosis of RBD:
The diagnosis of RBD typically involves a combination of clinical
evaluation and PSG with video monitoring. PSG is necessary to
confirm the diagnosis by demonstrating the loss of muscle
atonia during REM sleep. Additional tests, such as neuroimaging
and neurological evaluation, may be needed to rule out other
causes of RBD-like symptoms [1]. High prevalence of OSA
exists in patients with RBD, which can confound the analysis of
EMG tone and arousal activity. Accurate diagnosis of RBD is
crucial for predicting the likelihood of developing
neurodegenerative disease and implementing appropriate
treatment strategies. 

Study Objective:
Considering the complexities and potential confounders in
diagnosing RBD, there is a need for straightforward, accessible,
reliable, and affordable diagnostic approaches. This study
investigates different techniques for automated RBD detection
using single-night PSG, and compares the performance on
patients with and without OSA. The performance of these
methods is demonstrated on a dataset collected from Rush
University Medical Center.

The Dataset
RBD Dataset:

PSG sleep studies collected from Rush University
Medical Center.
N=69 RBD patients:

N=44 OSA, N=25 Non-OSA
N=326 negative controls:

N=261 OSA, N=65 Non-OSA
Patient demographics, PSG characteristics, and co-
morbid conditions were reviewed.

Historical Database:
Historical database of over 1 million sleep studies
N=50,000 PSG sleep studies sampled from over 300
clinics across the U.S. and 10 different recording
devices, used to train a sleep staging model.
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Methodology

Hypnodensity Random Forest (Hypno-RF):
We trained a sleep staging model using the
N=50,000 dataset.
We then extracted the hypnodensity [3] using
the output probabilities of the trained sleep
staging model.
We trained a random forest model using 400
hand engineered features (as defined in
reference [4]) extracted from the
hypnodensity.

PSG Sleep Report Data Random Forest (Sleep-
RF):

Trained a random forest model using 15
different PSG-based and sleep-based report
data calculated for each subject in the RBD
dataset.

PSG-EEG Based Deep Learning Model (PSG-DL):
Trained a deep learning model on raw EEG
signals derived from the RBD dataset

All models were trained using 10-fold cross-
validation
Performance was evaluated using area under the
receiver operating characteristic curve (AUC-
ROC), sensitivity, specificity, and F1-Score.
When possible, we evaluated feature importance
using the Gini Index.
We also performed statistical analysis on the
report data variables.

Models:

Evaluation Methods:

Results

Figure 1. ROC curve comparing the performance of each model.
Sensitivity and specificity were calculated by choosing the threshold that
maximizes the F1-Score.

RBD Detection Performance

Figure 3. Feature importance analysis for the Sleep-RF model. The values in the y-axis represent the importance of each feature. The higher the mean
decrease in impurity is, the more important the feature is to the overall prediction. RMS ratios compare between the level of chin tone in REM vs non-REM
sections, which is hypothesized to be associated with the level of atonia in patients with and without RBD.
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Figure 2. ROC curves comparing the performance of each model and demonstrates the difference in performance between patients with OSA
and patients without OSA.

Conclusions
Sleep-RF outperformed all other methods . This demonstrates the
potential of utilizing simple PSG report data along with machine
learning as a screening tool for the detection of RBD.
The lower performance of the other two approaches might be
attributed to the dataset size. Since both approach depend on either
more complex features or more sophisticated machine learning
methods, a larger dataset is usually required in order to observe an
increase in performance compared to simpler methods.
When comparing between the performance on patients with OSA
and patients without OSA, it is clear that the model's performance is
superior when tested on the non-OSA population. We hypothesize
the performance difference attributable to similarity and additional
complexity in sleep disturbance characteristics between RBD and
OSA.
The feature importance analysis indicated that the level of sleep
fragmentation plays an important role in the detection of RBD, as
expected. Furthermore, the chin tone of the patients during REM
surfaced as an important feature which is expected when
differentiating between patients with and without RBD.
The statistical analysis resulted in a statistically significant
association between chin tone and the presence of RBD, where
patients with RBD often demonstrated a higher chin tone compared
to non-RBD patients. In addition, patients with RBD displayed
larger number of REM sessions and less arousal events in REM.

Future Work
Future work will be dedicated to the collection of more data, which 
 might unlock the performance increase that is expected from the
more advanced machine learning methods.
More development is needed in order to isolate the similarities
between RBD patients and OSA patients, to allow for a more robust
RBD detector that is able to distinguish between patients with and
without RBD in both OSA and non-OSA populations.
Broad implementation of AI methods show potential to expand
early detection and diagnosis of RBD. Future work should be
dedicated to the testing of this detector on large, real-world data,
and asses its potential for the detection of neurodegenerative
conditions through expanded analysis, and follow-up.
Additional research is underway to help improve accuracy and
ensure these methods are generalizable across platforms and
clinical datasets.

Table 1. Ordinary least squares (OLS) summary. We ran all variables through an OLS model where each time one variable was varied while all
other variables were controlled for.
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