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Machine Learning (ML) algorithms to predict Positive Model 1: 90-day CPAP Days Used >0 Hours Forecast Model 2: 90-day Hours/Night Usage Forecast e ML algorithms based on PAP usage can predict
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personalized clinical management. Models were

yeE=007 08 | MSE0.04 | Rn2=0578 | R42=0.692 personalized treatment decisions and preemptive
developed to predict adherence at various time-points
after PAP initiation and in moving time windows.
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e Deep neural network (DNN) models were trained
utilizing daily PAP data (Kaiser Permanente,
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patients may struggle with adherence.
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Figure 5. Naive vs. ML
methods based on CPAP
Usage at the 60 day mark. 0.0
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e Model 1 predicted “% days without usage” for first b=0.08 ¢ the 60 day mark , , .
For example, more detailed metrics characterizing
. . Intermittent usage sessions intra-night would hel
and at 1-year (90-day window) based on the first J J P
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=
=
=
=




